Librarians' adventure into LODLAM

LODLAM Training Day
August 19, 2014
San Jose, CA

Silvia Southwick & Cory Lampert
UNLV Digital Collections
Agenda

• How the adventure started
• UNLV Linked Data project
• Technologies used for transforming metadata into linked data
• Visualizations of linked data (demos)
• Next steps and Q & A
Example of linked data visualization

- Pivot Viewer

C:\Users\Silvia\Desktop\videosCNI\PivotViewer.mp4
How we started (2012)

• UNLV Libraries study group
• Literature Review
• Survey of technologies
• Experimentation
• Design of a project
Why? Examples of current records
Making the Case for Linked Data

Problem:

– Rich metadata is being lost when adopting a standard that is designed for interoperability (Dublin Core)

– Rationale for adopting linked data is being disseminated, but there is very little practical implementation to serve as reference

– Evolving beyond records takes resources and requires embracing an exciting but unknown future
UNLV Linked Data Project

Goals:

• Study the feasibility of developing a common process that would allow the conversion of our collection records into linked data preserving their original expressivity and richness

• Publish data from our collections in the Linked Data Cloud to improve discoverability and connections with other related data sets on the Web
Main Concepts / Technologies

CONCEPTS
- URIs
- Triples
- RDF
- HTTP Protocol
- Triplestores
- SPARQL

Technologies
- Digital Asset Management (CONTENTdm)
- OpenRefine
- Karma (hierarchical data structure)
- Mulgara / OpenLink Virtuoso
- SPARQL end points
Actions

- Prepare data
- Export data

Technologies

- CONTENTdm
- Open Refine
- Mulgara / Virtuoso

Import data
- Clean data
- Reconcile
- Generate triples
- Export RDF

Import data
- Publish
Phase 1

• Clean data

• Export data
Clean / Export Data

Technology: CONTENTdm

- Increase consistency across collections:
 - metadata element labels
 - use of well-known CVs
 - share local CVs
 - etc.

- Export data as spreadsheet
OpenRefine

• Open source

• It is a server – can communicate with other datasets via http

• Open Refine and its RDF extension should be installed

Screenshots to show some of the functions we have used
Import Project

Create a project by importing data. What kinds of data files can I import?
TSV, CSV, *SV, Excel (.xls and .xlsx), JSON, XML, RDF as XML, and Google Data documents are all supported. Support for other formats can be added with Google Refine extensions.

Get data from
- This Computer
- Web Addresses (URLs)
- Clipboard
- Google Data

Locate one or more files on your computer to upload:
Browse... No files selected

Next »
Facets

The image shows a screenshot of a database interface with a focus on facets and records. The interface includes various columns such as **Show Collect**, **Date**, **Site Name**, **Graphic Element**, **Collection Subject**, **DC Type**, **Genre (TGM)**, **Language**, and **Is Part Of**. Each record is represented with specific data entries:

- **Costumes**: Dancers, Turbans, Skirts
- **Still Image**: Costume designs
- **Genre (TGM)**: Drawings
- **Language**: eng

The facet list includes categories such as:

- Graphic Elements (TGM)
 - 884 choices
 - Sort by: name, count
 - Airplanes; Chorus girls; 1
 - Animals; Dogs; Pets; Women; 2
 - Aprons; Trousers; Men; Vests; Stripes; 1
 - Audiences; Beads; Capes (Clothing); Costumes; Dancers; Theatrical productions; 1
 - Audiences; Beads; Costumes; Hats; Theatrical productions; 1
 - Audiences; Beads; Costumes; Chaps; Coats; Costumes; Cowboy boots; 1

The interface also includes options for **Facet/Filter**, **Undo/Redo**, and **Show as: rows, records** with options to show 5, 10, 25, or 50 records. The page is part of a project with the URL `127.0.0.1:3333/project?project=1698768213599`.

The interface is part of the Google Refine tool, which is used for data cleaning and transformation tasks.
Split multi-value cells

Table

<table>
<thead>
<tr>
<th>Source</th>
<th>Original Collection</th>
<th>Date</th>
<th>Site Name</th>
<th>Graphic Elements</th>
<th>Collection Subject</th>
<th>DC Type</th>
<th>Genre (TGM)</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-19 in vlyn collection</td>
<td>Las Vegas Show Costume Designs Collection;</td>
<td>1945; 1946; 1947; 1948; 1949; 1950; 1951; 1952; 1953; 1954; 1955</td>
<td></td>
<td>Facet</td>
<td>Still Image</td>
<td>Costume design drawings</td>
<td>eng</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Text filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Edit cells</td>
<td>Transform...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Edit column</td>
<td>Common transforms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Transpose</td>
<td>Fill down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sort...</td>
<td>Blank down</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>View</td>
<td>Split multi-valued cells...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reconcile</td>
<td>Join multi-valued cells...</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cluster and edit...</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source</th>
<th>Original Collection</th>
<th>Date</th>
<th>Site Name</th>
<th>Graphic Elements</th>
<th>Collection Subject</th>
<th>DC Type</th>
<th>Genre (TGM)</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-19 in vlyn collection</td>
<td>Las Vegas Show Costume Designs Collection;</td>
<td>1945; 1946; 1947; 1948; 1949; 1950; 1951; 1952; 1953; 1954; 1955</td>
<td>Costumes; Dancers;</td>
<td>Still Image</td>
<td>Costume design drawings</td>
<td>eng</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram

The diagram illustrates the process of splitting multi-value cells in a dataset. It shows the different steps and tools available for handling multi-valued data, including facet creation, text filtering, cell editing, column transformation, transpose, sort, view, reconcile, join, and cluster and edit functions.
Facet view for Graphic Elements after splitting
Reconciliation

<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Costume Details</th>
<th>Name of Sho</th>
</tr>
</thead>
<tbody>
<tr>
<td>sho000119</td>
<td>Costume design drawing, yellow calypso costume, circa 1945-55</td>
<td>Based on SPARQL endpoint... Add reconciliation service</td>
<td></td>
</tr>
<tr>
<td>sho000114</td>
<td>Costume design drawing, samba costume pencil sketch, circa 1945-55</td>
<td>Pencil sketch on tracing paper of female dancer in samba costume, with notations of colors and fabrics.</td>
<td>Samba</td>
</tr>
</tbody>
</table>
Activating Reconciliation

<table>
<thead>
<tr>
<th>Site name URI</th>
<th>Graphic Element</th>
<th>Graphic URI</th>
<th>Collection Subj</th>
<th>DC Type</th>
<th>Genre (TGM)</th>
<th>Genre URI</th>
<th>Lan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Facet</td>
<td>http://id.loc.gov/vocabulary</td>
<td>Still image</td>
<td>Costume design</td>
<td>drawings</td>
<td>http://id.loc.gov/vocabulary/genre/tgm002507</td>
<td>eng</td>
</tr>
<tr>
<td></td>
<td>Text filter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edit cells</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Edit column</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transpose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sort...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>View</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reconcile</td>
<td>Start reconciling...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Dancers

- Choose new match
- Copy reconciliation data...

Turbans

- Choose new match
- Discover related RDF datasets...
Europeana Data Model
Based on the EDM documentation at http://pro.europeana.eu/edm-documentation

Legend:
* not implemented by UNLV -- Aggregation class is under consideration
gray background -- not yet implemented by Europeana
blue font -- properties pertaining to the edm vocabulary
Mapping between Showgirls and EDM
Implementing Mapping (Skeleton)
RDF Schema Alignment

The RDF schema alignment skeleton below specifies how the RDF data that will get generated from your grid-shaped data. The cells in each record of your data will get placed into nodes within the skeleton. Configure the skeleton by specifying which column to substitute into which node.

Base URI: http://digiloc7.library.unlv.edu:8860/edit

<table>
<thead>
<tr>
<th>Available Prefixes:</th>
<th>do rdf dc edm foaf add osw rdf skos dcterms +add prefix +manage prefixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>(row index) URI</td>
<td></td>
</tr>
<tr>
<td>x edm:ProvidedCHO</td>
<td></td>
</tr>
<tr>
<td>add rdf.type</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RDF Skeleton</th>
<th>RDF Preview</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **dc:title** → **Title**
- **dc:creator** → **Individual creator** [URI URI]
- **dc:creator** → **Group creator** [URI URI]
- **dc:description** → **Description** [cell]
- **edm.isRelatedTo** → **Name show** [URI URI]
- **edm.happenedAt** → ** edm:Place** [cell]
RDF Schema Alignment

The RDF schema alignment skeleton below specifies how the RDF data that will get generated from your grid-shaped data. The cells in each record of your data will get placed into nodes within the skeleton. Configure the skeleton by specifying which column to substitute into which node.

Base URI: http://digloc7.library.unlv.edu:8850/ edit

RDF Skeleton

```
@prefix dc: <http://purl.org/dc/elements/1.1/> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix edm: <http://www.europeana.eu/schemas/edm#> .
@prefix foaf: <http://xmlns.com/foaf/0.1/> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix dcterms: <http://purl.org/dc/terms/> .

<http://digloc7.library.unlv.edu:8850/ProvidedCHO/sho000119> a edm:ProvidedCHO ;
dct:title "Costume design drawing, yellow calvans costume, circa 1945-55" ;
dcm:description "Sketch of female dancer in yellow calvans costume with skirt with long train, ruffled short sleeves, and
```

RDF Preview

```
<http://id.loc.gov/vocabulary/graphicMaterials/tgm002607> a skos:Concept .
<http://id.loc.gov/vocabulary/graphicMaterials/tgm002609> a skos:Concept .
```
Exporting RDF files

<table>
<thead>
<tr>
<th>Site name URI</th>
<th>Graphic Exer</th>
<th>Graphic URI</th>
<th>Collection Subj</th>
<th>DC Type</th>
<th>DC URI</th>
<th>DC URI (TGM)</th>
<th>Genre (TGM)</th>
<th>Genre URI</th>
<th>eng</th>
<th>Description</th>
</tr>
</thead>
</table>
Actions

- Prepare data
- Export data

- Import data
- Clean data
- Reconcile
- Generate triples
- Export RDF

Technologies

- CONTENTdm
- Open Refine
- Mulgara / Virtuoso
Phase 3

- Import data
- Publish
- Query
Mulgara Triple Store: Import
Graph URI: http://showgirls

Query Text:

Submit Query Clear Query

File: Browse... Upload

Results: (1 query, 7.643 seconds)

Simple SPARQL query

```sparql
Select *
Where {?s ?p ?o} limit 100
```
Visualization Open Source Tools

• OpenLink Virtuoso Pivot Viewer

• RelFinder
OpenLink Pivot Viewer

• Good for displaying images

• Selection of images through SPARQL Queries

• Allows refinements using facets

• Allows creating dynamic “collections”
SPARQL Query

```
describe ?thing
where{
?thing a edm:ProvidedCHO.
?thing edm:hasType ?tmuri .
?tmuri skos:prefLabel "Costume design drawings" .
optional {{?thing foaf:depiction ?image }}
}
```

Costume Design Drawings
Showgirls
Example of Pivot Viewer

• Link to the demo:
 C:\Users\Silvia\Desktop\videosCNI\PivotViewer.mp4
Examples of RelFinder

• Good to show relationships:
 – Among people
 – Among “things”
• Show type of relationships

Demos:
 – African American Experience in Las Vegas (Oral History):
 C:\Users\Silvia\Desktop\videosCNI\AAE_relationships.mp4
 – Cross collections people relationship:
 C:\Users\Silvia\Desktop\videosCNI\Frank_relationships.mp4
Next steps for the UNLV project

• Transform all digital collections into linked data
• Increase linkage with other datasets
• Publish as Linked Open Data
• Design and assess user friendly interfaces
• Work on integrating data from diverse local systems
• Produce a cost benefit analysis to inform future plans for the development of digital collections
Our Experience

• Project led, implemented and managed by two busy faculty librarians
• No model to follow; our model was experimentation and research
• With interest and motivation, Linked Open Data is a feasible goal
Thank You!
Questions?

UNLV’s Linked Open Data Blog: http://library.unlv.edu/linked-data

Cory Lampert
Head, Digital Collections
cory.lampert@unlv.edu

Silvia Southwick
Digital Collections Metadata Librarian
silvia.southwick@unlv.edu